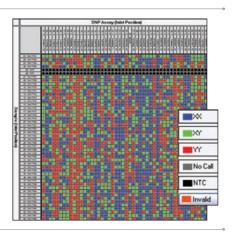


Fluidigm System for Rapid, Reliable, and Cost Effective SNP Genotyping


Single nucleotide polymorphisms (SNPs) are the most common form of genetic variation found in the genome of any organism. Although SNP genotypes are a powerful tool for understanding disease disposition and drug metabolism, SNP genotyping of large populations has been impractical because of the running costs and time associated with conventional microwell plate-based systems.

Comparatively, the Fluidigm system, including Fluidigm 48.48 Dynamic Arrays, is a nanofluidic system that is far more efficient while yielding equivalent call rates and reproducibility. Instead of robotic liquid-handling required to setup microwell plates, dynamic arrays have an integrated network of channels, chambers, and valves that automatically combine the reactions, conserving time, reagent, and sample amount. Following are results of experiments designed to validate call reproducibility of the Fluidigm system — and to demonstrate SNP genotyping concordance with the ABI 7900.

SNP Genotyping

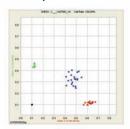
Overview. Forty-eight TaqMan® SNP genotyping assays were obtained from Applied Biosystems, Foster City, CA (Table 1). Five microliters of 10x assays were loaded into the primer/probe inlets of two dynamic arrays. Forty-six different DNA samples (159–186 ng/ μ I) were obtained from Coriell Cell Repositories, Camden, NJ (Table 2). Each sample was mixed with 2x Universal TaqMan® PCR Master Mix (Applied Biosystems) and loaded into the sample inlets of the dynamic arrays.

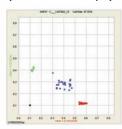
Results. The results are displayed as an allele map, with each data point a pair-wise combination of a specific SNP primer/probe and sample. The results show call rates greater than 99.5% and high concordance between the duplicate dynamic array runs.

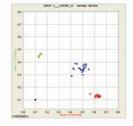
Assays Used

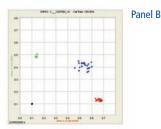
#	Assay Name	#	Assay Name	#	Assay Name
1	C1210911_10	2	C1210596_10	3	C1207992_10
4	C1159676_10	5	C1156012_10	6	C1146078_10
7	C16125161_10	8	C_16085063_10	9	C15988806_10
10	C 1364233 10	11	C 1382252 10	12	C 1364122 10
13	C1267995_10	14	C1267960_10	15	C1258500_10
16	C1244732_10	17	C1243062_10	18	C1227201_10
19	C11561443_10	20	C11505408_10	21	C11469692_1_
22	C11272136_10	23	C_11207933_10	24	C11276169_1_
25	C_15961560_10	26	C940460_1_	27	C_12123462_10
28	C11668187_1_	29	C11282289_10	30	C_12048556_10
31	C 1282193 10	32	C 25618415 10	33	C 12122586 10
34	C1295519_10	35	C25800766_10	36	C25802021_10
37	C 11562154 10	38	C 1284447 10	39	C 25650851 10
40	C11628747_1_	41	C11281361_1_	42	C_12098654_10
43	C15969983_10	44	C11572811_10	45	C11899452_10
46	C11993375_10	47	C1207992_10	48	C_12005976_10

Table 1. SNP genotyping assays used in the study.

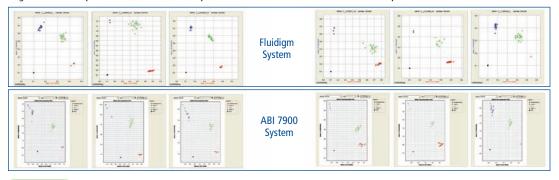

#	Sample ID	#	Sample ID	#	Sample ID
1	NA17101	2	NA17102	3	NA17103
4	NA17104	5	NA17105	6	NTC
7	NA17107	8	NA17108	9	NA17109
10	NA17110	11	NA17111	12	NA17316
13	NA17113	14	NA17114	15	NA17115
16	NA17116	17	NA17117	18	NA17118
19	NA1719	20	NA17120	21	NA17121
22	NTC	23	NA17123	24	NA17124
25	NA17125	26	NA17126	27	NA17127
28	NA17128	29	NA17129	30	NA17130
31	NA17131	32	NA17132	33	NA17133
34	NA17134	35	NA17135	36	NA17136
37	NA17137	38	NA17138	39	NA17139
40	NA17140	41	NA17141	42	NA17142
43	NA17143	44	NA17144	45	NA17145
46	NA17146	47	NA17147	48	NA17148


Table 2. DNA samples used in the study.


Reproducibility


Intra- (Panel A or Panel B) and inter-chip (Panel A and B) reproducibility of assay clusters.

Panel A.



SNP GENOTYPING

Concordance with Conventional Platforms

The same forty six samples were run against the same 12 primer/probe sets on both the Fluidigm system and a 7900HT Sequence Detection System (Applied Biosystems). Sideby-side comparison shows complete concordance, with a 99.5 percent call rate.

Benefits

Flexibility.

User choice of any 48 samples and any 48 SNP genotyping assays.

Set up and Run time.

Takes less than three hours.

Automation Compatibility.

Standard 384 well format.

Throughput.

Each dynamic array delivers the throughput of six 384-well plates.

SNP Genotyping Analysis Software.

- Auto-calling of SNP genotypes from the clusters.
- Visual overlay of clusters from multiple dynamic arrays.
- Flexible annotation of sample and assay information from the source plate.
- Pipetting maps of samples and primer/probes from the 96-well plates.
- Summary reports, containing the number of clusters, call rates, and confidence for each assay.

Reaction Volumes

Dynamic arrays require much smaller volumes of reaction components, which substantially reduces running costs.

	48.48 DYNAMIC ARRAY	SIX 384 WELL PLATE*	FOLD REDUCTION
10X ASSAY	192 µl	300 µl	1.6X
DNA AMOUNT	150 ng	480 ng	5.2X
TAQMAN UNIVERSAL PCR MASTER MIX	150 μΙ	9200 µl	61X

* Assumes reaction volume of 8 µl

Conclusion

The Fluidigm system is a highly efficient alternative to microwell plate-based systems for SNP genotyping studies requiring 16 or more genes to be screened against 1,000s of samples. The advantages include lower running costs, exponentially higher throughput per run, and simplified setup of reactions. The Fluidigm system provides these advantages while yielding excellent call rates and concordance with widely used microwell plate-based systems.

WORK FLOW

1 Prime Prime the IFC to prepare for samples and assays.

2 Transfer
Transfer samples and assays into separate inlets on the chip.

Place the IFC on the IFC controller to automatically setup reaction chambers.

4 Thermal Cycle
Place the IFC onto the
Stand-Alone Thermal
Cycler and start the
PCR protocol.

Read
Place the IFC on
the EP1 Reader for
fluorescence detection.

Europe/EMEA: +31 20 578 8853 | biomarkeurope@fluidigm.com

Japan/Korea: +81 3 3555 2351 | biomarkasia@fluidigm.com

Corporate Headquarters

Fluidigm Corporation 7000 Shoreline Court, Suite 100 South San Francisco, CA 94080 USA

Toll-free: 1.866.FLUIDLINE (1.866.358.4354) Asia: +65 9431 3790 | biomarkasia@fluidigm.com Fax: 650.871.7152

www.fluidigm.com

© Fluidigm Corporation. All rights reserved.

Fluidigm, the Fluidigm logo, BioMark, EP1, SlingShot, and FLUIDLINE are trademarks or registered trademarks of Fluidigm Corporation in the U.S. and/or other countries. All other trademarks are the property of their respective owners. Fluidigm recommends that you only purchase TaqMan® dual-labeled probes and/or other licensed PCR assay reagents from authorized sources.

FOR RESEARCH USE ONLY.

MRKT00076e

North America: 650.266.6170 | biomark@fluidigm.com